Close Thu: $\quad$ 14.4, 14.7(1)
Close Tue: $\quad 14.7(2), 15.1$
Close Next Thu: 15.2, 15.3 (integrating!)
Office Hours Today: 1:30-3:00pm (Smith 309)
Math Tutors: 9:30am-9:30pm (Com B-014)
CLUE Tutors: 7:00pm - midnight (Mary Gates)

Entry Task: Find the tangent plane, the linear approximation and total differential for

$$
f(x, y)=x^{2}+3 y^{2} x-y^{3}
$$

$$
\text { at }(x, y)=(2,1) \text {. }
$$

## 14.4/14.7 Tangent Planes \& Max/Min

## Tangent Plane Summary \& Applications

Tangent Plane:
$z-z_{0}=f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$

Linear Approximation:
$L(x, y)=z_{0}+f_{x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)$
Total Differential:
$d z=f_{x}\left(x_{0}, y_{0}\right) d x+f_{y}\left(x_{0}, y_{0}\right) d y$
Concepts:
If $(x, y) \approx\left(x_{0}, y_{0}\right)$, then
$f(x, y) \approx L(x, y)$ and $\Delta z \approx d z$.

## Applications

1. Linear Approximation:
"Near" the points $\left(\mathrm{x}_{0}, \mathrm{y}_{0}\right)$ the tangent plane and surface $z$-values are close.
2.Differentials: Same idea in terms of differences.
Actual changes on surface are:
$\Delta x=x-x_{0}, \Delta y=y-y_{0}, \Delta z=f(x, y)-f\left(x_{0}, y_{0}\right)$
Approx changes on tangent plane:

$$
d x=x-x_{0}, d y=y-y_{0}, d z=z-z_{0}
$$

## Example:

Use the linear approximation of

$$
f(x, y)=x^{2}+3 y^{2} x-y^{3}
$$

at $(x, y)=(2,1)$ to approximate the value of $f(2.1,0.9)$.

### 14.7 Local Max/Min

Consider a surface $z=f(x, y)$.
Some Terminology:
A local maximum occurs at $(a, b)$ if $f(a, b)$ is larger than all values "near" it (top of a hill).

A local minimum occurs at $(a, b)$ if $f(a, b)$ is smaller than all values "near" it (bottom of a valley).

A critical point is a point $(a, b)$ where BOTH

$$
f_{x}(a, b)=0 \text { and } f_{y}(a, b)=0
$$

or where either partial doesn't exist.

Note: If a local max/min occurs at a point, then that point must be a critical point!

## Example:

Find the critical points of

$$
f(x, y)=3 x y-\frac{1}{2} y^{2}+2 x^{3}+\frac{9}{2} x^{2}
$$

## Second Derivative Test

 Let ( $a, b$ ) be a critical point.Find all second partials at $(a, b)$
$\left(f_{x x}(a, b), f_{y y}(a, b), f_{x y}(a, b)\right)$ and compute
$D=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}$

1. If $\mathbf{D}>\mathbf{0}$, then the concavity is the same in all directions. So
(a) If $f_{x x}>0$, then it is concave up in all directions. Local minimum.
(b) If $f_{x x}<\mathbf{0}$, then it is concave down in all directions. Local maximum.
2. If $\mathbf{D}<\mathbf{0}$, then the concavity changes in some direction.
We say $(a, b)$ is a saddle point.
3. If $\mathbf{D}=\mathbf{0}$, the test is inconclusive (need a contour map)

Quick Examples:

1. $\mathrm{f}(\mathrm{x}, \mathrm{y})=15-\mathrm{x}^{\mathbf{2}}-\mathrm{y}_{\mathrm{y}}^{\mathbf{2}}$,

Critical pt: $(0,0)$.
$f_{x x}=-2, f_{y y}=-2, f_{x y}=0$,
$D=(-2)(-2)-(0)^{2}=4$
2. $f(x, y)=x^{2}+y^{2}$,

Critical pt: $(0,0)$.
$f_{x x}=2, f_{y y}=2, f_{x y}=0$,
$D=(2)(2)-(0)^{2}=4$
3. $f(x, y)=x^{2}-y^{2}$

Critical pt: $(0,0)$.
$f_{x x}=2, f_{y y}=-2, f_{x y}=0$,
$D=(2)(-2)-(0)^{2}=-4$

Example: Find and classify all critical points for

$$
f(x, y)=3 x y-\frac{1}{2} y^{2}+2 x^{3}+\frac{9}{2} x^{2}
$$



Examples from old exams:

1. Find and classify all critical points for

$$
f(x, y)=x^{2}+4 y-x^{2} y+1
$$

2. Find and classify all critical points for

$$
f(x, y)=\frac{9}{x}+3 x y-y^{2}
$$

3. Find and classify all critical points for

$$
f(x, y)=x^{2} y-9 y-x y^{2}+y^{3}
$$

## Global Max/Min

Consider a surface $f(x, y)$ over a particular region $R$ on the xy-plane.

An absolute/global maximum over $R$ is the largest $z$-value over $R$.

An absolute/global minimum over $R$ is the smallest z-value over R.

Key fact (Extreme value theorem) The absolute max/min must occur at either

1. A critical point, or
2. A boundary point.

Example: Let R be the triangular region in the xy-plane with corners at $(0,-1)$, $(0,1)$, and $(2,-1)$. Over $R$, find the absolute max and min of

$$
f(x, y)=\frac{1}{4} x+\frac{1}{2} y^{2}-x y+1
$$

Step 1: Critical points inside region.
Step 2: Boundaries (the triangle has 3).
i) For each boundary, give equation in terms of $x$ and $y$.
ii) Find intersection with surface (i.e. substitute).
iii) Find critical numbers and endpoints for this one variable function. Label "corners" (these are the one variable endpoints)

Step 3: Evaluate the function at all points you found in steps 1 and 2.

Biggest output = global max Smallest output = global min



Homework hints:

In applied optimization problems,
(a) Identify what you are optimizing (objective)
(b) Label Everything.
(c) Identify any given facts (constraints)
(d) Use the constraints and labels to give a 2 variable function for the objective.

## HW Examples:

1. Find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to $(4,2,0)$.
Objective: Minimize distance from $(x, y, z)$ points on the cone to the point $(4,2,0)$ given that $z^{2}=x^{2}+y^{2}$.
2. Find the dimensions of the box with volume $1000 \mathrm{~cm}^{3}$ that has minimum surface area.
Objective: Minimize surface area given that volume is 1000 .
